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and indeed he suggests that any heterogeneity might be used 
to help estimate U when the span of E(z I y) is not all of 
U . It would be interesting to see how these ideas work out 
in practice. 

4. OPEN QUESTIONS 

Let me finish with some questions about the likely be- 
havior of SIR in practice and some issues that need more 
careful study. 

1. How heavily does the performance of SIR depend on 
the sphericity assumption on z? Is a violation of sphericity 
likely to be a problem in practice? 

2. What is the effect of changing the number of slices 
H? Clearly a large H will cut down the variability in B,, 

KER-CHAU LI 

First, I would like to thank the discussants for their thought- 
provoking comments. I appreciate their support on SIR, as 
evidenced by the richness of their discussions in highlight- 
ing some obscure facets of SIR, in demonstrating SIR's 
power, and in proposing several extensions. I agree with 
them that this article is just the beginning of something that 
might evolve into routine practice in data analysis. There 
is much to be done to reach that point. Since the idea of 
SIR was conceived, I have gathered a string of related ideas 
and results. I am pleased to find some of these in agreement 
with key suggestions from the discussants. 

For example, the connection with classical discriminant 
analysis suggested by Kent was addressed in Li (1989). 
Chun-Houh Chen is now working on SIR's application in 
the classification tree context. He is also working with me 
on SIRII, second-moment based SIR, which appears to have 
a good deal of overlap with the SAVE suggested by 
Cook and Weisberg. The proposals by Hiirdle and Tsyba- 
kov based on a different viewpoint are stimulating in build- 
ing up a better theory for dimension reduction and data 
visualization. 

Another shortcoming of this article, the application of 
SIR to real data, was remedied by several examples in Cook 
and Weisberg's discussion. To further ease the reader's mind 
on the applicability of SIR, let me briefly comment on my 
own efforts in this vein, reported elsewhere. For instance, 
the Boston housing data (Harrison and Rubinfeld 1978) are 
treated in Li (1989), where, with SIR, we reduced the num- 
ber of regressors from thirteen to three and found a slide- 
(or helix-) looking data cloud. In Li (1990a), a six-variable 
function describing the voltage level of a push-pull circuit 
in television manufacturing was visualized by SIR. Li 

whereas a small value of H will cut down the variability in 
W,. The pleasing results from the simulation study may be 
due merely to the relatively large sample sizes. I suspect 
some normal theory calculations might be able to offer some 
quantitative insight into an optimal choice of H.  

3. The conditional expectation E(z I y) may be of in- 
herent interest, and it should be plotted along with the other 
data summaries. SIR essentially fits a piecewise constant 
function to this conditional expectation as y varies. Other 
fits would also be of interest, such as splines. Indeed some- 
thing like a spline fit might be used to generalize the whole 
SIR procedure. 

Lastly, I look forward with interest to seeing some real 
examples where the use of SIR has enhanced the interpre- 
tation of the data. 

Rejoinder 

(1990b) demonstrated how SIR could be applied to the re- 
sidual analysis for the Los Angeles ozone data (Breiman 
and Friedman 1985). Regarding small data sets, the wor- 
sted yarn data (Box and Cox 1964), which has 27 obser- 
vations for a 33 factorial design, was reanalyzed with SIR, 
recovering the logarithm transformation of y well. 

In the following, I will first concentrate on three major 
issues raised by the discussants: (1) design condition, (2) 
second moment SIR (SIRII), and (3) distribution of eigen- 
values. After that, I will respond to each discussant sepa- 
rately. The last section is added to address Brillinger's dis- 
cussion, which arrived late. 

I. DESIGN CONDITION 

I agree with all discussants that the most controversial 
condition in this article is (3.1). As Cook and Weisberg 
have explicitly pointed out, in order to guarantee this con- 
dition before analyzing the data, we need to check if x is 
elliptically symmetric. I would like to reemphasize, how- 
ever, that (3. l )  is in fact much weaker than the elliptic sym- 
metry because the linear conditional expectation only needs 
to hold for the Pp's that are in the e.d.r, space. Thus if we 
are lucky, we can still have (3.1) without elliptic syrnrne- 
try. Cook and Weisberg gave a nice illustration of how this 
might happen. But, of course, the first question is how often 
can we be so lucky? The next question is what to do if we 
are not. Both will be discussed here. 
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1.1 Mild Violation of (3.1) 

As pointed out in Remark 3.3, thanks to Diaconis and 
Freedman (1984), we expect for most data sets that a blind 
application of SIR (without verifying the elliptic symmetry 
of the design distribution) can still lead to an approximately 
correct answer. 

Here is another simulation to support this argument. 

1. Set p = 10 and generate 400 cases of x = (x, .... 
x,)' - uniform in [-0,f i l p .  

2. Generate an orthogonal pair of P I ,  P, uniformly from 
the unit sphere of RP. 

3. Generate y using the rational function model (6.3). 
4. Run SIR to find p, ,  p2. Compute the two closeness 

measures: R2(p1), and R2(b2). 
5. Repeat (2)-(4) another 99 times. Output the histo- 

grams of the closeness measures (Figures R. 1, and R.2). 

In this simulation, the design distribution is not ellipti- 
cally symmetric. Yet because the dimension p = 10 is high 
and the true directions are given at random, we expect (3.1) 
to be satisfied approximately most of the time, implying 
that SIR will do well for most data sets generated. This is 
confirmed by Figures R. 1 and R.2. 

1.2 Severe Violation and Nonlinear Confounding 

We have argued that for most data sets, (3.1) should hold 
approximately, and therefore SIR might be expected to do 
the right thing. However, we cannot ignore those unlucky 
situations where (3.1) is violated severely. To the contrary, 
due to unusualness, severe violation of (3.1) can be a valu- 
able scientific feature of the data. Hence its detection poses 
an important new problem for statisticians. 

A crucial aspect of this new problem is the nonlinear con- 
founding effect, as discussed in Li (1989). To pinpoint the 
key issue, consider first the extreme situation that y =f(P,x), 
a one-component model without errors. The most severe 
violation of (3.1) occurs when the design distribution is de- 
generate, so that bx = g(P,x) for some direction b. If g is 
strictly monotone, then we can rewrite the model as y = 
f[g-'(bx)]. In this case, due to the nonlinear confounding, 
the scatterplot of y against bx can be as informative as y 

Figure R.2. The Histogram of ~ ~ ( f i , ) .  

against px. Hence the best strategy for statisticians is to 
find and to report both directions, making room for other 
scientific evidence to resolve the ambiguity. 

Li (1990a) conducted a simulation study to evaluate the 
performance of SIR under a severe violation of SIR. A lin- 
ear model, y = px + e, was used to generate the data. We 
imposed a quadratic constraint on the design distribution 
between the true direction p, = (1, 0, 0, 0, 0) and b = (0, 

21, 0, . .  .): (P,x) - .5 5 bx 5 + .5 (see Figure R.3). ( p , ~ ) ~  
The distribution for any other covariate is normal. SIR found 
two components significant. Their joint distribution is given 
in Figure R.4, resembling Figure R.3 very well. In this 
case, we see that SIR has done much more than anticipated: 
it recovered both the true direction and the direction b vi-
olating (3.1) most severely. 

The spin-plot of y against both directions of SIR looks 
like a slide (Figure R.5). Interestingly, it looks similar to 
the spin-plot found by SIR for the Boston Housing data. 
After finding a nonlinear confounding pattern in the data 
like this, it is perhaps wiser for statisticians to stay away 
from the debate about which direction in the plane spanned 
by the two estimated directions is truly responsible for af- 
fecting y. Other scientific argumenti is usually more per- 
suasive at this stage of data analysis. Pointing out the pos- 
sible limitations of the data should be viewed as an important 
contribution from statisticians. 

There are other twists on SIR that can be helpful for re- 
vealing nonlinear confounding. For instance, we can re- 

0 . 8 6 2 5  0 . 9 0 7 5  0 . 9 5 2 5  0 . 9 9 7 5  

Figure R. 1. The Histogram of R*(& Figure R.3. Scatterplot of the Design Distribution. 
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Figure R.4. Scatterplot of the First Two Directions of SIR. 

gress & against x with SIR, where 6 is any estimated e.d.r. 
direction. We can even>ry double slicing, namely, con-
ditioning on both y and fix. More about these ideas will be 
treated elsewhere. 

Remark R.1. Theoretically speaking, if K is given, then 
we can still estimate the e.d.r. space, even if the nonline- 
arity confounding is rather severe. For example, for K = 
1, we can search for a direction b such that conditional on 
bx, x is independent of y. Following the discussion in the 
first paragraph of our article, this will be the fi direction 
needed. But to implement this idea, we need a good mea- 
sure of dependence and an efficient searching algorithm. 
Progress has been made more recently by exploring the 
double slicing idea: Minimize the maximum eigenvalue of 
the matrix 

cov[E(x I bx, y)] - cov[E(x I bx)], 

assuming that x has been standardized. Another strategy is 
to remove the nonlinear trend of x before applying SIR: 
Minimize the maximum eigenvalue of 

cov{E[x - E(x I bx) I y]). 

The detrended variable, x - E(x I fix), plays an important 
role in determining the minimum Fisher's information if we 
treat our problem as a semiparametric estimation; see the 
thesis by Go (1989) for details. 

. 


Figure R.5. Spin-Plot for SIR. 

Although this article has concentrated on the use of the 
inverse regression curve (i.r, curve) to find the e.d.r. space, 
a natural extension would consider the curve of the con- 
ditional covariance, cov(x I y), as y varies. Like the i.r. 
curve, the orientation of this second-moment curve (i.r.11 
curve) in the space of p X p symmetric matrices is useful 
for determining the e.d.r. space. This was hinted at in sev- 
eral places in our article. Kent and Cook and Weisberg were 
enthusiastic in pursuing this extension. A significant step 
was further taken in Cook and Weisberg's discussion, where 
they reported some promising results with SAVE, one of 
the many possible ways of implementing SIRII. With such 
encouragement, I am going to sketch my own general SIRII 
approach below. Some basic strategies will be offered, aimed 
at clarifying the role of SAVE within the SIRII approach. 
Details will appear elsewhere. 

2.1 Removing the Center 

Recall that in our study of the i.r. curve, the center, E(E(x 
I y)) = E(x), does not provide any information on e.d.r. 
space. In fact, we have conveniently shifted it to zero when 
standardizing x to z. So the first question for us is whether 
or not we should remove the average of the i.r.11 curve, 
air11 = E[cov(x I y)]? A positive answer is hinted by the 
ANOVA identity 

2, = sirI + airII, 

where we define sirI = cov[E(x I y)]. 
Clearly, the information about the e.d.r. space from the 

center of the i.r.11 curve is the same as that from the term 
sirI, which has been fully explored by the first-moment SIR 
method. In addition, Remarks 3.1 and 5.3 of our article 
have used this identity in providing a heuristic for the root 
n consistency of the two-per-slice estimate (H = n/2), later 
rigorously proved by Hsing and Carroll (in press). 

In the following, it is convenient to use z, the standard- 
ized x. This applies to the definition of sirI and air11 as 
well. So now consider the standardized centered i.r.II curve, 
cov(z I y) - airII, as y varies. From Remark 4.5, one can 
see that, when z is normal, the orthogonal complement of 
the standardized e.d.r. space falls into the common null 
space of cov(z I y) - airII. Thus like the first moment i.r. 
curve, the orientation of the standardized centered i.r.II curve 
is not arbitrary; it falls into a proper subspace of the sym- 
metric matrices. This is the key to the success of SIRII. 

Now consider a direction b with unit length. One con- 
venient measure of its distance from the aforementioned 
common null space is the average squared length of the 
vector b(cov(z I y) - airII) (cf. Remark R.2). By maxi- 
mizing this distance, we can find the standardized e.d.r. 
directions. This leads to the eigenvalue decomposition of 
the matrix 

The above discussion applies to the case where y is al- 
ready discretized. In fact, to obtain the sample estimate for 
the continuous y, the method of slicing as used in the first 
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moment SIR is recommended. Bias correction can also be 
incorporated for small slices. 

Successful simulation studies have been conducted for 
several models-for example, y = sign(~)[log(l@,xl)- .75] 
with 300 cases and p = 10 (Figures R. 6 and R.7). For a 
more complicated model, y = sign(Pzx)[@(l/3,xl) - .5], 
where @ is the normal c.d.f., our second-moment based 
method can only recover the direction of P,. The second 
direction, however, is recovered well by further applying 
the double-slicing method mentioned earlier. 

Remark R.2. To measure the distance of a direction b 
to the aforementioned common null space, we can consider 
the average of (b[cov(z I y) - air111b')~. This leads to the 
maximization of var[var(bx I y)] suggested in Li (1990a). 
We have found that the largest eigenvector of sirII, provides 
a good initial estimate for this maximization problem. 

Remark R .3. In the preceding discussion, shifting is used 
to remove the center of the i.r.11 curve. Another useful al- 
ternative is rescaling, leading to the eigenvalue decompo- 
sition of the matrix sirII, = ~[air11- ' /~cov(z 1 y)air~~- ' /2-
112. 

Remark R .4. For elliptically symmetric distributions, 
using the argument of Theorem 6.2 of Li (1990b), we can 
see that the orthogonal complement of the e.d.r. space is 
contained in a common eigenspace of cov(z I y) - airII. Li 
argued that, in most cases, the common eigenvalue is likely 
to be small for large p and small K. The argument of Theo- 
rem 6.1 of Li (1990b) can be used to discuss the case where 
only (3.1) is assumed. 

2.2 Combining sir1 and sirll, 

As intentionally decomposed, conjugate information has 
been used for increasing the chance of discovering new e.d.r. 
directions. On the other hand, if an e.d.r. direction can only 
be marginally detected by both sir1 and sirII, we may opt 
for sharpening the result by a suitable combination. One 
convenient choice is to consider the mixture, 

The optimal choice of a should be made adaptively. 
Now we can easily verify that for a = .5, we have 2sirI1, 

Figure R.6. Scatterplot of y Against p,x. 
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Figure R. 7. SIRll's View: y Against the First Direction Found by SIRII,. 

= E[(E(z I y) - I )~ ] ,  which is what SAVE intends to es- 
timate. This explains why SAVE is doing well regardless 
of the value p in Table 1 of Cook and Weisberg's discussion. 

Remark R.4. Like SIR, the method of pHd (Li 1990b) 
evokes several variants for implementation. If q-based pHd 
is used, then the last column of Table 1 in Cook and Weis- 
berg's discussion will be identically zero. 

2.3 Common Rank Reduction 

In addition to the simple and crude ways of finding the 
common null space and its orthogonal complement men- 
tioned in this article, a rich and related literature is avail- 
able. It is associated with the areas of common principal 
component analysis, correspondence analysis, optimal scal- 
ing, and Gifi's nonlinear multivariate analysis, to name a 
few. Chun-Houh Chen is currently working on the appli- 
cation of these ideas to SIRII. We have also received a 
good deal of help from Jan deLeeuw in this. 

3. EIGENVALUES 

Cook, Weisberg, Hkdle, and Tsybakov all doubted the 
validity of the simple chi-squared test for determining the 
number of components K when the normality of x is vio- 
lated. However, invalidity does not demolish usefulness. 
My experience shows that examining the change in the p 
value as K varies often leads to an appropriate choice of 
K. This is in the same spirit as the use of the whole C, plot 
instead of just a single number of the maximum (Mallows 
1973). 

Cook and Weisberg suggested the permutation test as an 
alternative. But as elsewhere, the permutation test is only 
valid for testing the null effect model. For our problem, 
it is only valid for testing K = 0. For other cases, one could 
resort to a bootstrap procedure for suggesting other 
alternatives. 

Motivated by the decomposition of the joint density of 
(y, x) from the inverse regression viewpoint (see Remark 
3.2 in the main article), the following is one way of ap- 
plying a bootstrap procedure for testing K = 1 against K 
r 2. 

1. Run SIR on the given sample to find the p,'s. Com-
pute ui = &xi and vi = (PZxi,. . .) for i = 1, . . . , n. 
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2. Sort cases by ui's so that u(,, ':... ':u ( ~ ) .  
3. Create a new population for bootstrapping: for j = 1, 

..., k, 

and 

(Y(~),  for i k + 1, . . . , n ,qi ) ,  u (~-~))  = 

where k is a fixed number. 
4. Draw an iid sample of size n from the bootstrap pop- 

ulation in (3). 
5. Run SIR and compute the average of all but the larg- 

est eigenvalues . 
6. Repeat (4) and (5) many times to get the desired boot- 

strap distribution of the average eigenvalues. Use this dis- 
tribution as the reference to determine the significance of 
the first component. 

Generalization for testing other K is straightforward. 
Variants of the above algorithm exist; for instance, the it- 
eration loop in (6) may be replaced by performing steps 
(1)-(5) with an independent bootstrap sample of (y, x) drawn 
from the empirical distribution each time. 

&mark R.5. As noted in the Appendix, if cov(z I Y) is 
homogeneous along all directions orthogonal to the e.d.r. 
space, then the chi-squared approximation is still valid. For 
small sample sizes, simplified versions of the bootstrap can 
be obtained under this assumption. For instance, (2)-(4) 
can be replaced by drawing a bootstrap sample from the 
vi's (either with or without replacement) to merge with (yi, 

4, MORE 

Hardle and Tsybakov recommended a couple of very in- 
teresting nonparametric regression techniques for dimen- 
sion reduction. I am looking forward to seeing more study 
on these procedures. But we need to find a common ground 
for incorporating their ideas into the framework of inverse 
regression. Hiirdle and Tsybakov hinted that the complexity 
of the procedure should increase in order to attack the more 
complex problems. This is true, but we should also be aware 
that complicated procedures tend to have more pitfalls, and 
methodological breakthroughs may come from the appro- 
priate simplification of a seemingly complicated situation. 

Brillinger (1983) observed that the linear regression slope 
estimates the average derivative when the design distribu- 
tion is normal. Thus ADE intends to handle the nonnormal 
situation by estimating the score function of x. How ADE 
bypasses the curse of dimensionality in kernel density es- 
timation is not clear. Another problem is how to handle the 
case where the average slope is zero or small, for instance, 
the symmetric (or zero) response function. I also have dif- 
ficulties in understanding Hkdle and Tsybakov's claim that 
the extension to the multicomponent case is obvious be- 
cause the matrix B, is of rank one only! Maybe one possible 
way of fixing the problem in this vein is to implement the 
discussion given in paragraph 8 of section 2 in our article. 

The characterization obtained by Hkdle and Tsybakov 
for recommending the nonparametric regression of the i.r. 

curve turns out the same as the one given in our article 
because their term B is identical to cov(E(x I y)) when E(x) 
= 0. 

It would be interesting to see how much additional gain 
can be obtained by smoothing. If nonparametric techniques 
are desirable for estimating i.r, curves, then I prefer Kent's 
suggestions, in particular, the use of a linear smoother with 
the associated matrix being a projection matrix, such as 
spline-model fitting by least squares. This is in part because 
of the better theoretical properties if adaptive smoothing is 
to be considered (Li 1987). Another reason is that the afore- 
mentioned ANOVA identity can be conveniently used when 
proving the root n consistency for a wide range of the val- 
ues of the smoothing parameter. 

Kent focused on SIR'S connection with multivariate anal- 
ysis by formulating the key ideas in terms of classical dis- 
criminant analysis. This is a direction well worth further 
exploration. Indeed, as mentioned previously in section 2.3, 
progress has been made in this direction. Regarding the as- 
sumptions he made, I would emphasize once more the dif- 
ference between his (a) and (3.1) in the article. The inter- 
esting theoretical question about the optimal choice of H 
needs further study. 

Cook and Weisberg have made an enormous contribution -
on several fronts. They have helped clarify some properties 

SIR, have done impressive work on SAVE, and have 
c d e d  out very interesting applications with real data. They 
also brought up many important issues, such as the validity 
of eigenvalue distributions and the dynamic graphic pre- 
sentations of the results found by SIR. I am sure that, given 
time, most of the open they raised will be re- 
solved. For now, let me mention Carroll and Li (1990), 
where errors in the regressors can be treated easily. In that 
paper, we also discussed how to incorporate a stratification 
variable like age or sex. For other extensions, SIR can eas- 
ily handle missing values; SIR can deal with both trunca- 
tion and censored data. 

5. BRILLINGER'S DISCUSSION 

To me, Brillinger's discussion is as inspiring as his work 
(1977, 1983). As usual, he beginswith an example of great 
scientific interest. This time, it is the problem of estimating 
the direction and speed of the motion of weather fronts. 
Brillinger has given our dimension reduction assumption 
(1.1) a scientific justification. First, I would like to add 
more detail for the case of two waves. Then I will address 
the important subsampling technique that Brillinger used 
for ensuring the design condition (3.1). 

If two waves are present, we can represent the e.d.r. space 
as the plane spanned by (1, 0, cl) and (0, 1, c,), where el,  
c2 form the solution of the linear equations yi = (ai, Pi)(cl, 
c2)' (i = 1, 2). Our dimension reduction technique can es- 
timate this plane, or equivalently, el,  c,. Thus we can ex- 
press the speed yi as a function of the direction (ai, Pi). 
This piece of information can be useful, for instance, in 
setting an upper bound for the wave speed (less than 
(c: + ~22)"~ without any prior knowledge about the direc- 
tions of movement). 

After estimating (c,, c,), we can explore the special ad- 
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ditivity structure of the response function for identifying the 
two directions (ai, pi) (i = 1, 2). First, substitute the speed 
y, by ((a,, Pi)(c,, c2)'. This reduces the model to 

2 

Y(X,y, t )  = ~ ( i ,j )  = C ~ ( ( a , i+ p i j )  + noise, 
i= l 

where i = x + clt and j j  = y + c2t. Next, observe that the 
Hessian matrix of E[Y(i, j ) ]  (i.e., the 2 X 2 matrix of the 
second partial derivatives) at any point takes the form 

2 

where hi depends on the location of the point ( i ,  y'). Now 
we can use the method of pHd to estimate the average of 
the Hessian matrices over two regions. Let H I ,  H,be the 
resulting estimates. Their two common oblique axes are our -

final estimate of the wave directions, each direction being 
the orthogonal complement of one of the two eigenvectors 
for the eigenvalue decomposition of HI with respect to H,. 
As we have seen, the estimation of the speed is much easier 
than the direction, an interesting point to report. 

Returning to the design condition, Brillinger introduces 
a clever probability-propo~ional-to~size sampling tech-
nique force (3.1). This leads another rich 'lass of 
methods for resolving the controversial design issue; namely, 
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change the weight of the xi's suitably before applying SIR. 
The reweighted distribution, denoted by p,,, has support 
contained in the support of the empirical distribution of x. 
For instance, we can cut out the comers of the lattice and 
use the remaining points as p,,,hoping that it is close to an 
elliptic distribution. We can vary the center, the length, and 
the orientation of the approximating elliptic (or the normal) 
distribution to create different p,,. We can even use two or 
more such p,,for comparing (or combining) the results from 
different regions of x. It would be useful to recast the dis- 
cussion of Section 6 of Li and Duan (1989) in light of this. 

I thank the former editor, Ray Carroll, for organizing the 
discussion. 
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